Control of the homogeneity of an optical grating by a neural characterization
Abstract
Progress in microelectronics has allowed the fabrication of optical gratings with small period-to-wavelength ratios, which are very useful in several applications, such as telecommunication and optical sensors. A rapid and nondestructive characterization process is essential to check the agreement of the produced with the expected structure. The main difficulty is in assuring sufficient homogeneity all along the grating surface. We show that neural characterization coupled with neural selection can be efficiently applied to this quality measurement. Depicted results concern a 1-µm-period grating fabricated by reactive ion etching on a silicon substrate.